
EVN Developer Guide

Page Contents

1 EVN Tutorials
1.1 Preparing Ontology, Taxonomy and Crosswalk Data for Import

1.1.1
1.2 Advanced Debugging
1.3 EVN Integration Points

1.3.1 As a SPARQL endpoint
1.3.2 SPARQL endpoint update

1.4 Application Configuration
1.4.1 Extension Process
1.4.2 Common extension tasks

1.4.2.1 Adding SPARQL query templates for use in Taxonomy Editor
1.4.2.2 Adding SPARQL endpoints to the copy taxonomy concept from SPARQL endpoint list
1.4.2.3 Creating and maintaining new SPIN constraint libraries (DEPRECATED; use SHACL)
1.4.2.4 Customizing the login screen
1.4.2.5 Customizing the Landing Page
1.4.2.6 Customizing Icons
1.4.2.7 Adding New Menu Choices
1.4.2.8 Customizing Form Layouts
1.4.2.9 Adding descriptive text below section titles
1.4.2.10 Controling order and collapse/expand status of form sections
1.4.2.11 Configuring search text properties
1.4.2.12 Adding custom actions on create
1.4.2.13 Adding Event-Condition-Actions Rules

1.4.3 Customizing the Governance Roles
1.4.4 Adding Custom Workflow Templates

1.4.4.1 Defining workflow template status
1.4.4.2 Defining workflow template transitions
1.4.4.3 Example workflow-template file with diagram layouts
1.4.4.4 Example of teamwork:tagShape

2 Getting Started with Custom Data Quality Rules in EVN
3 The TopBraid Teamwork Framework

3.1 Getting Started with TTF
3.1.1 Why TTF?
3.1.2 Overview of TTF

3.2 Graphs, Permissions and Change Tracking
3.2.1 Anatomy of a Teamwork project
3.2.2 Permissions
3.2.3 Change tracking
3.2.4 Working copies (tags)
3.2.5 Comments and Tasks

3.3 Vocabulary/Asset Collection (Project) Types
3.3.1 Creating a new vocabulary/asset collection (project) type
3.3.2 Create-new pages
3.3.3 Project plug-ins
3.3.4 Custom icon for project type

3.4 Extending the Problems and Suggestions Reports
3.5 Notifications
3.6 Editors

3.6.1 Creating an Editor

EVN Tutorials
This guide describes options and advanced techniques for customizing aspects of TopBraid EVN. This is for advanced users, administrators, and
developers who can address topics in EVN systems, semantic technologies, and development tools including the TopBraid Composer - Maestro

 (TBC-ME) environment.Edition

https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/

In general, any modifications or extensions should be developed in a non-production environment and thoroughly tested under relevant product
conditions before deploying into production. Additionally, support considerations apply for both production usage and migrations as technical
needed for upgrades.product

If you are interested in the possibilities for tailoring TopBraid EVN to better suit your needs, please contact TopQuadrant to explore the following
options:

Having TopQuadrant quickly configure a customized EVN solution to meet your detailed requirements. We will be pleased to quote and
provide affordable customization and tailoring services.
Enabling your organization to develop and maintain customizations for EVN by guiding and training your selected personnel to perform
the variety of customization capabilities.

Preparing Ontology, Taxonomy and Crosswalk Data for Import

As described in the Importing RDF into the Taxonomy Editor section of the User Guide chapter, EVN expects that RDF imported into the
taxonomy editor conforms to the W3C SKOS standard. That section describes specific details about classes and properties that EVN expects to
see such as and . If you have SKOS RDF that does not fit this model—for example, skos:ConceptScheme skos:hasTopConcept skos:

 is absent —you can use SPARQL CONSTRUCT or UPDATE queries and TopBraid Composer to add or convert to the ConceptScheme

necessary SKOS data. TopBraid Composer includes a range of features for developing and executing these queries, as well as for saving them
in a SPARQLMotion script if you need to run a given CONSTRUCT query or set of queries on a regular basis. Taxonomy Editor also expects the
use of If your RDF contains values, they will be converted to values.skos:prefLabel. rdfs:label skos:prefLabel

EVN Ontology Editor has no special requirements on the classes, properties or instances that must be present. The only exception is the
presence of statements for classes, which are needed for rdfs:subClassOf them to appear in the class tree.

EVN Crosswalks contain RDF triples of the following form:

example:Vocabulary1_Resource1 skos:closeMatch :example:Vocabulary2_Resource1.

Valuable data for use in your vocabularies and asset collections may not be stored in RDF, but instead in another model or format. The Importing
spreadsheet data section of the User Guide chapter describes how to import spreadsheets representing a taxonomy hierarchy in a choice of
patterns; if your spreadsheet does not fit one of these patterns, TopBraid Composer offers several approaches for converting a spreadsheet into
RDF that can then be converted to SKOS RDF with CONSTRUCT queries. In the TopBraid Composer > Help, see Importing Data Sources >

for an overview of these approaches and links to more detailed information.Import external information > Import Spreadsheets

You can also use tabular (ho hierarchy) spreadsheets to import data, including creating relationships between resources. For crosswalks the
spreadsheet should have only two columns representing the two sides of the crosswalk. No mapping will be required.

You can create an ontology from a spreadsheet - using the header row as properties and the worksheet name as a class.

If your data is in one or more relational databases, TopBraid lets you create connectors that make it possible to work with that data as RDF triples
so that you can then convert it to SKOS. In Composer's online help, select Working with Data Back Ends > Working with Relational

 to learn more.Databases

SPARQLMotion scripts let you create scripts by dragging and dropping from a wide selection of specialized modules into visual data manipulation
pipelines. You can run these scripts interactively from within Composer or as web services deployed to your EVN server. SPARQLMotion module
choices such as ConvertJSONToRDF and ConvertXMLByXSLT give additional options for taking advantage of non-RDF data that may be
available to you. In the Composer online help, select for an overview of Application Development Tools > SPARQLMotion Scripts
SPARQLMotion and select for a complete list of available modules. These modules Reference > SPARQLMotion Module Library Reference
can also be used within SPARQL Web Pages (SWP) scripts. Unlike SPARQLMotion where data transformation scripts are developed using a
visual drag and drop approach, SWP is a textual scripting language using custom HTML tags and JavaScript.

TopBraid's Semantic XML feature gives you another option for converting XML to RDF, storing enough information about the input XML to let you
round-trip the data back to a valid XML document. Select Working with XML and Table files > Creating, Importing, Querying, Saving XML

 to learn more about this feature.documents with Semantic XML

If you are unsure which choices in the TopBraid Composer toolset would let you best take advantage of the data available to you, contact your
EVN support representative.

Once you create a custom import script with TopBraid Composer, you can make it available to all EVN users by following instructions in the Projec
 section.tPlug-ins

Advanced Debugging

Debugging of complex relationships within your data may require more sophisticated investigations than the EVN query form allows. You can
send the data any SPARQL query you like via the SPARQL endpoint, which has a web-based form at /EVN/tbl/sparql where you can enter
queries. (For example, for an EVN installation at , the endpoint would be at .)http://mycompany.com/EVN http://mycompany.com/EVN/tbl/sparql

For an RDF-based test-case framework, see : DASH Test Cases Vocabulary http://datashapes.org/testcases.html

http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-ProjectPlug-ins
http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-ProjectPlug-ins
http://datashapes.org/testcases.html

1.
2.

3.

4.

Even more advanced investigations can be done by FTPing models to a local copy of TopBraid Composer (TBC-ME). The following is a series of
general steps that can be used in this scenario. Note these steps will not work for TDB backend.

FTP the EVN vocabulary project to a folder on the machine running TBC-ME.
Use Import Existing Projects into Workspace to place the project into TBC-ME's workspace. This give you access to the data through the
back-end.
Modification can be made directly to the data graph as needed, because save operations will save to the data back end.

If you use TopBraid Composer and not EVN to make these changes, they will not be recorded using EVN change tracking features, and
may conflict with activity taking place using the web-based interface, so should be avoided.
 Test in localhost to make sure the changes are correct.

EVN Integration Points

TopBraid EVN's ability to import and export data gives you some batch-oriented options for using data from other systems as well as providing
managed vocabulary data and metadata for use by other systems. For more dynamic integration with other systems, EVN offers two classes of
options: web services and a SPARQL endpoint.

As a SPARQL endpoint

Add to your EVN server's domain name and port number to get the URL of its SPARQL endpoint. Each asset collection is /evn/tbl/sparql
stored as a separate named graph on the server; to find a given asset collection's graph name, mouse over its name on the EVN home screen
and note the projectGraph parameter in the URL that the name links to. The SPARQL standard treats references to non-existent graphs NOTE:
the same as references to empty ones, which means that incorrect graph URIs might not raise any obvious errors.

For example, if you have EVN installed at the domain name ourserver.com on port 8080, entering the following query into the TopBraid
Composer SPARQL view would send a query to that endpoint requesting a list of Continent resources in the Geography vocabulary:

SELECT ?continent WHERE
{ SERVICE <http://ourserver.com:8080/evn/tbl/sparql>
 {GRAPH <urn:x-evn-master:geo>
 {?continent a <http://topquadrant.com/ns/examples/geography#Continent>}
 }
}

Instead of using a SPARQL client, such as the TBC-ME SPARQL view to send the query to the endpoint with the SERVICE keyword, you (or,
more likely, an application you are building) can run the query by embedding an escaped version of it in a URL built on the endpoint URL. For
example, let's say you wanted to send the following query to the endpoint : http://ourserver.com:8080/EVN/tbl/sparql

SELECT ?continent WHERE
 {GRAPH <urn:x-evn-master:geo>
 { ?continent a <http://topquadrant.com/ns/examples/geography#Continent>}
}

You can add an escaped version as a query parameter value to the endpoint URL shown above, resulting in the following URL (split here for
display, but to be treated as a single line). The best practice is to use a URL encoding function to properly format the query for HTTP:

http://ourserver.com:8080/evn/tbl/sparql?query=SELECT+?continent+WHERE+{GRAPH+<urn:x-evn-master:geo>+
{?continent+a+<http://topquadrant.com/ns/examples/geography%23Continent>}}

An option to specifying the named graph with the GRAPH keyword, is to name the graph in a default-graph-uri parameter added to the URL. For
example, let's look at this simpler query that does not mention the graph to query:

SELECT ?continent WHERE
{?continent a <http://topquadrant.com/ns/examples/geography#Continent>}

Escaping this and adding it to the SPARQL endpoint URL with the named graph specified using the default-graph-uri parameter gives us the
following URL (split here for display, but to be treated as one line):

http://localhost:8080/evn/tbl/sparql &query=SELECT+?continent+WHERE+?default-graph-uri=urn:x-evn-master:geo
{?continent+a+<http://topquadrant.com/ns/examples/geography%23Continent>}

For further information on these options and on ways to specify the result set format, see the TBC-ME online help at TopBraid Composer >
TopBraid Live Integration > TopBraid Live SPARQL Endpoint.

1.
2.

3.

4.
5.

SPARQL endpoint update

SPARQL Update statements can be executed on EVN project graphs. By default, SPARQL Endpoint Updates are disabled. To enable updates
set the : to true in . Access Advanced Parameter Enable SPARQL updates Server Administration > Server Configuration Parameters
controls are also available for SPARQL Endpoint Updates. For more information on setup for SPARQL Endpoint update, see SPARQLEndpointUp
date

SPARQL Update statements use the servlet with the parameter for specifying the SPARQL Update query. Note that the query sparql update
must therefore explicitly specify a graph context to execute the update in using the GRAPH <...> syntax. An example update call is shown in the
following URL:

tbl/sparql?update=INSERT{GRAPH <urn:x-evn-master:schemaexample>{<http://topbraid.org/examples/topquadrant%
> < > "a comment"}}WHERE {}23TBEVN http://www.w3.org/2000/01/rdf-schema%23comment

Note this assumes a user is logged in, either via a browser or a basic authentication request. SPARQL Updates can be included in the change
history by appending the user name to the end of the graph name as in the following example. The change will be added to the change graph
with the currently logged in user as the creator of the change.

tbl/sparql?update=INSERT{GRAPH <urn:x-evn-master:schemaexample:Administrator>{<http://topbraid.org/examples
> < > "a second comment"}}WHERE {}/topquadrant%23TBEVN http://www.w3.org/2000/01/rdf-schema%23comment

Access controls can also be defined for SPARQL Update using the Permission Group Management page and the SPARQLUpdateAllowGrp and
SPARQLUpdateDenyGrp groups. For more information see the document.Permission Group Management

Application Configuration

This section illustrates some of the ways that EVN can be extended to customize the user experience. The most basic and probably most
powerful way of adjusting EVN to your specific needs is by defining your own schemas for different types of resources (as classes and properties)
through the editor. The UI is flexible enough to handle any number of custom properties of any data type.

TopBraid EVN was designed to offer, out-of-the-box, most of the core capabilities needed for enterprise vocabulary and asset management
functions identified by our market research and interactions with a wide variety of organizations.

Recognizing that some organizations and users may require a certain degree of modifications and additions to the user interface and functionality
—ranging from simple (for example, adding a logo, changing some color scheme choices) to (for example, tailoring customization of operations
modifying or adding a use case)— TopBraid EVN includes several levels and capabilities for customization. Built on the , TopBraid Suite platform
designed for creating and modifying flexible applications, EVN's features as well as its look and feel can be customized through:

Adding or modifying business actions through scripts. SPARQLMotion is a visual scripting language for data processing SPARQLMotion
and orchestration. Many new operations can be added by developing new scripts.
Changing the look and feel or content of EVN on entry pages such as the EVN home page, management, and working copy
management pages using , a SPARQL-based framework for describing user interfaces.SPARQL Web Pages

If you are interested in the possibilities for tailoring TopBraid EVN to better suit your needs, please contact TopQuadrant to explore the following
options:

Having TopQuadrant quickly configure a customized EVN solution to meet your detailed requirements. We will be pleased to quote and
provide affordable customization and tailoring services.
Enabling your organization to develop and maintain customizations for EVN by guiding and training your selected personnel to perform
the variety of customization capabilities outlined below.

The rest of this section describes some of the most frequently used customization options.

Extension Process

Creating some of EVN customizations and extensions requires using TopBraid Composer-Maestro Edition (TBC-ME), which serves as the IDE
for TopBraid EVN. TBC-ME is a development toolkit for TopBraid server products. Some experience with is required SPARQL Web Pages (SWP)
to build EVN extensions. The general process of customizing and extending EVN using TBC-ME is as follows:

Create a project that will only contain your extension files. This project will need to be uploaded onto the server for deployment.
In that project, create a SPARQL Web Pages file (RDF/SWP) with TopBraid Composer. Make sure that file ends with (for .ui.*
example,), so that EVN will use it as part of the global registry of SWP components. Unless you restart, you myextensions.ui.ttlx
may need to click to ensure that TBC knows about your new file. System > Refresh TopBraid system registries .ui.
In the SWP file, create the extension by making the appropriate additions to your .ui.ttlx file, for example based on the examples
mentioned below.
You can test your components incrementally by launching EVN from within TBC on localhost.
Once you want to use them on the server, use the TopBraid Live project upload feature to put the project containing the SWP file (and
supporting files if needed) into production. Refresh the workspace through the EVN administration console after uploading. A server
restart may be advisable.

http://wiki.topquadrant.com/display/TBS55/EVN+Administration#EVNAdministration-AdvancedParameters
http://wiki.topquadrant.com/display/TBS55/EVN+Permission+Group+Management#EVNPermissionGroupManagement-SPARQLEndpointUpdate
http://wiki.topquadrant.com/display/TBS55/EVN+Permission+Group+Management#EVNPermissionGroupManagement-SPARQLEndpointUpdate
http://wiki.topquadrant.com/display/TBS55/EVN+Permission+Group+Management
http://www.topquadrant.com/products/
http://www.topquadrant.com/products/SPARQLMotion.html
http://www.topquadrant.com/technology/sparql-web-pages-swp/
http://www.topquadrant.com/technology/sparql-web-pages-swp/

6. TopQuadrant will attempt to ensure compatibility of the extension points with each release. In practice this means that you will only need
to redeploy your customization project to TopBraid EVN after you have done a fresh reinstall of a new version. In the case of major
technology upgrades it may be unavoidable to have to make adjustments to your customizations. Please test thoroughly after installing a
new release.

The file contains examples that you can use as a starting point to understand how to implement other extensions. You can evn-plugins.ui.ttlx
download that file and save it into your workspace. Then use to activate the example extensions and Model > Refresh global SWP graphs
launch EVN to play with them. The following sub-sections briefly describe how to change CSS styled and all examples from the evn-plugins.

. In TBC, you can use to get a clickable list of these extensions. ui.ttlx Model > Find all locally defined resources

Common extension tasks

Adding SPARQL query templates for use in Taxonomy Editor

To add new taxonomy template query choices to the selections described in Running template queries in the Taxonomy help pages, use
TopBraid Composer Maestro Edition to create some that follow the pattern of the existing ones and then upload the project containing your new
template queries to the EVN server.

The easiest way to accomplish this is by creating a new RDF file, checking "File will export SPIN Functions or Templates (.spin extension)" on the
"Create RDF/OWL/SPIN File" dialog box.

Once the file has been created, import EVN.topbraidlive.org/spin/skostemplates.spin.ttl into it, and then create a new subclass of skostemplate:
IntegratedTemplates, using the existing subclasses that you see as a model. You will see that the rdfs:label property of each stores the text
displayed as the template's name on the EVN drop-down list, its rdfs:comment value provides the tooltip, and the spin:Execute template query...
body property stores the query to execute. Define run-time parameters by adding spl:Argument values to the spin:constraint property.

After saving the file, upload the project containing it to the EVN server, and the new menu template will be available to your users on the Execute
 menu.template query...

For tips on testing your query against data stored on EVN before uploading its project to make it one of the query template selections, see EVN
.As a SPARQL Endpoint

Adding SPARQL endpoints to the copy taxonomy concept from SPARQL endpoint list

The EVN user guide chapter's section on describes how to EVN Taxonomy Editing: Copying Data from Remote Sources and Other Taxonomies
copy taxonomy concepts from SPARQL endpoints. SPARQL endpoints listed in the dialog box are stored Copy Concept from SPARQL Endpoint
in a model that uses the SPARQL Service Description schema.

Working with these models requires TopBraid Composer, the administrative interface to EVN. To create one, create a SPARQL Web Pages file
(that is, one with .ui. in its name, such as EVN-endpoints.ui.ttlx) that imports sd.ttl from the Common folder of TopBraid Composer's TopBraid
project in the Navigator view.

To add a choice to the list of endpoints, define an instance of sd:Service in your SPARQL Web Pages Copy Concept from SPARQL Endpoint
model. For each, specify the URI of the endpoint as an sd:endpoint value and the name of the endpoint that you want to appear on the dialog box
as an rdfs:label value.

This model must be made available to the EVN server; the simplest way to do so would be to create it in its own project and to then upload that
project to the EVN server.

Creating and maintaining new SPIN constraint libraries (DEPRECATED; use SHACL)

TopBraid EVN's includes a number of pre-defined constraint templates that let users specify data constraints - . You can use Constraint Libraries
TopBraid Composer to define new SPIN constraint templates. Once a template is defined and uploaded to the server, it is available for selection.

To do this, use TopBraid Composer to create a model with ".spin." in its filename (for example,) that has myConstraints.spin.ttl spin:
 values added to any classes whose definitions are visible in that model (for the taxonomy editor and any class you constraint skos:Concept

like for the ontology editor). Import the SPIN/spin.ttl library from the TopBraid SPIN project into the model with your class definitions to make the s
 property available on the class editing form. The skosspin.spin.ttl model included in the SKOS folder of the TopBraid project pin:constraint

imports spin.ttl and the skos-core.ttl W3C standard SKOS model in order to implement several of the constraints described in the W3C SKOS
specification, and these constraints can serve as a model for new ones that you create. See the "Adding constraints" section of Getting Started

 for additional information on using TopBraid Composer to create new constraints.with SPARQL Rules (SPIN)

Deploying that model to your EVN installation's workspace will make that model appear in the manage tab on the vocabulary/asset collection's
home page under Constraint Libraries. Each model created in this manner will show up as a separate choice on the list, so splitting constraints
across models will let you use specific subsets of your total constraint collection in different combinations as necessary for your application.

If you keep these models in a dedicated project in TopBraid Composer, that project can be redeployed to the TopBraid Live server running the
EVN application to put those changes into effect as described in the TopBraid Composer online help under TopBraid Composer > TopBraid

.Live Integration > Overview of TopBraid Live Integration

Changing CSS Styles

http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx
http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx
http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx
http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-AsaSPARQLEndpoint
http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-AsaSPARQLEndpoint
http://wiki.topquadrant.com/display/TBS55/Taxonomy+View+or+Edit%2C+EVN#TaxonomyVieworEdit,EVN-CopyingDatafromRemoteSourcesandOtherTaxonomies
http://wiki.topquadrant.com/display/TBS55/Ontology+Utilities%2C+EVN#OntologyUtilities,EVN-SPINConstraintLibraries(dataqualityrules)
http://www.topquadrant.com/spin/tutorial/
http://www.topquadrant.com/spin/tutorial/

1.

2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.

In order to customize the TopBraid EVN user interface styling, follow this process:

Identify the CSS style that you want to change. This is usually done by looking at the source code or the DOM tree of the HTML with a
tool such as FireBug.
Create a folder ending with in the workspace—for example, . Restart TBC to make sure that it knows about that folder..www my.www
In that folder create a CSS file, for example, .my.css
Add your custom CSS In that CSS file.
Create a file (File -> New RDF/SWP File), and add to its imports..ui. evn.topbraidlive.org/EVN/EVN.ui.ttlx
In that file, select the SWA class and add an empty row to the property.:Elements ui:headIncludes
In that row, enter a line such as .<link href="lib/my/my.css" rel="stylesheet" type="text/css"/>

Here is an example CSS snippet to override the default logo:

.edg-product-logo {
 background-image: url(images/CustomizedLogo.png);
}

To verify that this worked, you should see the link to your CSS file in the generated source of EVN.

Note that the folder is a redirect to any folder ending with in your workspace. This way you can also add images and other /lib/... .www
resources such as JavaScript files.

Customizing the login screen

To implement a background image, locate the following code in logon.html:
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">

And beneath it, insert the following code:

html, body {
 min-height: 100%;
}
body {
 background-image: url(http://path-to-your-background.jpg);
 background-repeat: no-repeat;
 background-position: 0 0;
 background-size: cover;
}
@media (min-width: 1024px), (min-height: 576px) {
 body { background-size: auto; }
}

Update the background-image url, add the @media’s min-width and min-height dimensions to match the image.

To add an image to the login window, browse to the bottom of the file and locate the following section:
</style>
<title>TopBraid Live Login Page</title>
</head>

<body>
<div class="loginform-dialog">
<div class="loginform-container">
<!-- --> http://your-custom-logo-here.jpg

Uncomment the tag and update the src attribute to point to the location where the image is hosted.

Images cannot be hosted from within the application server. Authentication prevents any assets outside of the .html file from being accessed
anonymously. Because of this, they must be hosted on a separate web server. You can also alter the html file to use colors, text and fonts.

Customizing the Landing Page

In TBCME File -> New -> RDF/SWP File
Import edgproduct.ui.ttlx into the newly created file
From classes view, navigate to edproduct:LandingPage
Right Click -> Clone
Set the ui:overrides in the newly created cloned class to edgproduct:LandingPage

At this point we should have a clone of the landing page that is overriding the standard one, and are ready to make some changes:

http://evn.topbraidlive.org/EVN/EVN.ui.ttlx
http://your-custom-logo-here.jpg/

1.
2.
3.

Replacing the EDG Heading Information -

The 'Welcome to TopBraid EDG' part of the landing page is coming from teamwork:EdgLandingPageHeading - so we can do the same sort
of clone and override operation to change this content:

 Navigate to teamwork:EdgLandingPageHeading
Right Click -> Clone, and set the ui:overrides on the clone to teamwork:EdgLandingPageHeading
Make some changes - update the body to something like this:

edgproduct.ui.ttlx

<ui:group>
 <section>
 <div class="col-xs-12">
 <h1>This is my Custom header EDG</h1>
 Totally Customizable
 <p>How cool is that?</p>
 </div>
 </section>
</ui:group>

4. Save, and refresh the homepage.

5. You should see your changes reflecting:

Customizing Icons

TopBraid EVN allows the icons of resources in the tree components to be changed, even assigning different icons to representing different
classes for easier visual identification by end users.

To do this, first define a CSS style using the steps described above, pointing that style to a background image of your choice. Then, store the
name of that style at the class that you want to change the icon of, using the property . Point the evnui:Editor SWA application at swa:typeIcon
your CSS file, and the tree will use that icon for all instances of the associated class.

For example, to reset the concept hierarchy icon for instances of the Country class in the Geography vocabulary with a myCountryIcon.jpg file
stored in the same directory as your CSS file, you could add the following lines to it:

.CountryStyle {

background-image: url('myCountryIcon.jpg');

background-position: center;

background-size: 100%;

}

Then, import the Geography schema file geo.tdb into your custom ui.ttlx file and assign the g:Country class a value of swa:typeIcon
"CountryStyle". Finally, import evn.topbraidlive.org/taxonomy/evn.ui.ttlx into your custom .ui.ttlx file and add a ui:headIncludes value of the
following to the evnui:Editor class, adjusting the name and path to point at your own CSS file:

<link href="lib/my/my.css" rel="stylesheet" type="text/css"/>

On the concept hierarchy, you will see your new icon in place of the default one for the specified class:

If no direct type icon exists, it will walk up the superclass tree. In the case of the Concept hierarchy, it will eventually reach the icon defined for the
class .skos:Concept

Adding New Menu Choices

For an example of adding a new menu choice you can follow the procedure below.

In the example file described at the beginning of this section, navigate to to see how to evn-plugins.ui.ttlx evn-plugins:ExampleGlobalAction
contribute items to the global context menu in the header area. This example adds the "Example global action" menu choice. When selected, it
counts the number of concepts in the model.

These global menu items can be used for a large variety of tasks, and the example illustrates how to make an Ajax call-back to the server along
the way.

The context menu at the bottom of the screen lists menu choices that act on the currently selected resource. See evn-plugins:
 in the example file for an example of how to add an item to this menu. Those action items are often used to perform ExampleResourceAction

edits on the selected resource, and the example shows how such edits are implemented using . Below we can see the "Example ui:update
resource action" item that this example adds to the menu; selecting it displays a dialog box that queries the user for "related" and "date" values
that it then adds to the resource:

http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx

Further details are provided in the values of the examples.rdfs:comment

Customizing Form Layouts

Versions 5.4+: Using SHACL constraints

From TopBraid version 5.4 onward, SHACL constraints are the recommended way of defining the layout of property groups in forms. For a given
class, its form layout consists of the property groups used by its constraints (via), and is used for relative sh:property sh:group sh:order
ordering of both the groups and the properties. This property grouping and ordering for form layouts can be customized in the Ontology editor for
classes that have property shapes defined. For a selected class, in its details pane, select Actions (gear button) > View/Edit SHACL property
layout groups...

This opens an interactive, non-modal window showing the selected class's property-groups, properties, and their relative-order values (integers
or decimals). The pop-up window works in parallel with the main editor such that changes in one are reflected in the other.

In addition to grouping properties in to sections, you can also define a display name for a property that is different from the label. This can be
particularly useful for inverses. And you can select different edit, search and view widgets. By default, widgets will correspond to the type of the
value that a property has.

Versions 4.5 and up: Using form editor or SWP

TopBraid 4.5 introduced a graphical form layout editor, allowing end users to define which properties show up for a given class and in what order.
Utilizing the editor, EVN users can create custom form layouts without having to use TopBraid Composer. This feature continues to be supported
for advanced use cases and form configurations. Majority of form configurations can be accomplished by using SHACL, as described in the
section above.

Forms created using web based form layout editor are stored in the file in the folder under the uiconfig.ui.ttl dynamic server.
 project. Note that form layouts are global to EVN. If a class has a custom form, all instances of the class will be using this topbraidlive.org

form - irrespective of the vocabulary/asset collection they are in.

For advanced use cases please take a look at the SWA documentation (available from) for details on how to define Help > SWA Help/Examples
custom form layouts via SWP. You can create an initial form with the web based form layout editor and then, if necessary, extend it further using
TopBraid Composer.

Forms are attached to classes using property. Since file doesn’t import any ontologies, to find the class ui:instanceView uiconfig.ui.ttl
to which your form is attached to, you need to do one of the following:

Temporary import your ontology file, then you will see the class in the Classes view of TopBraid Composer.
Type the URI of the class in the global navigation field of the TBC toolbar, make sure to use <> around the URI.
Use SPARQL. Run the following query in the SPARQL view. Then, in the results, select the subject (class) you are interested in.

 SELECT *
 WHERE {
 ?subject ui:instanceView ?object .
 }

SWA documentation () explains how to create nested widgets when you want to fold into a form information about Help > SWA Help/Examples
related resources. For example, for an organization, in its address field you may want to directly display the street address, city and state - as
opposed to a link to a resource holding this information. To do so, set the address property to be a blank node as shown below. This statement
can be added to the file and will be effective globally. EVN will interpret it as a direction to nest the form for this property.uiconfig.ui.ttl

http://server.topbraidlive.org
http://server.topbraidlive.org

1.

2.

< > swa:blankNodeProperty true .http://www.example.org/address

The layout of the nested form will be determined by the class in the range of the "blank node" property. In our example, this may be a class
Address. When used in editing, if user enters information in the fields of the nested form, EVN will automatically create a blank node (e.g.,
instance of an Address) as a subject to hold information entered a nested form.

Another useful example of customization you can find in SWA documentation explains how to define dynamic ranges for some of the form fields.
For example, if you need the values for countries to be dependent on the values for states.

Further, the SWP library used by EVN, the TopBraid SWP Application Components Library SWA, provides a flexible plugin mechanism that
allows developers to add custom widgets to forms. Those widgets can insert arbitrary HTML, replacing the default widgets that render values as
simple labels or hyperlinks. The SWA documentation (in the) provides some background. In the Help > SWA Help/Examples evn-plugins.

 example file, navigate to for an example Google Maps component. You can use this with the ui.ttlx evn-plugins:ExampleMapObjectViewer
Geography example taxonomy that is shipping with TopBraid Composer.

Adding descriptive text below section titles

When using SHACL to define forms, the property-group sections of either the view or edit forms, custom text (e.g., a line of description,
instructions, etc.) can be added below each section title by setting either of the corresponding properties: or view group description edit group

 (cf. in code: and).description tosh: GroupDescriptionview tosh:editGroupDescription

Controling order and collapse/expand status of form sections

When using SHACL, you can elect to have a form section closed by default by setting the field to false and field to true. Section open openable
will be initially presented as collapsed and users will be able to open it.

Configuring search text properties

The EVN advanced search forms by default include a global text field called "Search any Text" that searches across all string properties of the
matching instances. For large models with a lot of strings, this may be quite slow. It is therefore possible to limit the properties on a class-by-class
basis, for example by searching only within a preferred and alternative names, but not descriptions or other text properties.

To configure this behavior and specify the properties to be searched by this field, execute the following steps in TopBraid Composer:

Create an empty SWP file with a name ending with —for example, GeoSearchForm.ui.ttlxui.ttlx

2.
3.

4.

Import the SWA namespace (swa.ui.ttlx) and the ontology defining the class that will search field into the file.Search Text Properties
For each property to be searched by the field, add a triple of the form Search Text Properties {?class swa:

 to the file, where is a class you want to limit the search for and is the fullTextSearchProperty ?property} ?class ?property
property to include in the list of properties to search.
Upload the file to the EVN server when done.

Adding custom actions on create

Custom plugins are used to modify behavior when new items are created.

For example, you may want EVN to perform additional initialization whenever a new taxonomy concept is created—to assign a new unique ID for
each new concept or perform any other desired initialization. EVN provides a plugin mechanism that allows developers to add such initializations.
See for an example of such a plugin.evn-plugins:ExampleCreateConceptPlugins

You can use a similar plugin to adjust the dialog box that appears when any new entity is created. For example, URIs of newly created instances
of certain classes could be auto-generated. See for an example of such a plugin.evn-plugins:UUIDCreateResourceDialogPlugin

Similarly, EVN can be configured to perform additional initializations whenever a new vocabulary/asset collection has been created through the
user interface. Among others, this can be used to automatically pre-populate the user permissions (in the .tch. graph) with certain user groups.
See for an example of such a plugin.evn-plugins:ExampleCreateProjectPlugin

Plugins for initializing new resources

EVN can be configured to perform additional initialization whenever a new resource is created—for example, to assign a new unique ID for each
new concept. EVN provides a plugin mechanism that allows developers to add such initializations. See evn-plugins:

 for an example of such a plugin.ExampleCreateConceptPlugins

Custom plugins for dialog boxes

The dialog box that appears when new items are created can be customized. This applies to any item e.g., a taxonomy concept, a class, an
attribute, a relationship, an instance of any class. For example, if we auto-generate URIs of newly created items, we wouldn't want to have the
URI field be editable in the dialog. Instead, we want to generate and display it. See for an evn-plugins:UUIDCreateResourceDialogPlugin
example of such a plugin.

Custom plugins for creating vocabularies/asset collections

EVN can be configured to perform additional initializations whenever a new asset collection has been created through the user interface. Among
other tasks, this can be used to automatically pre-populate the user permissions (in the .tch. graph) with certain user groups. See evn-plugins:

 for an example of such a plugin. The following image shows the custom dialog box from the example in ExampleCreateProjectPlugin evn-
 This dialog uses a UUID() generated namespace and does not allow the user to change that namespace. Defining static .plugins.ui.ttlx

namespaces is also possible.

Custom plugins for cloning vocabularies/asset collections

EVN can be configured to perform additional steps after a vocabulary/asset collection has been duplicated via the Create Cloned Version action.
This is done by creating a new subclass of the abstract class teamwork:ClonePlugins, and by defining the custom behavior using SWP in the ui:
prototype of the new class. The arguments for prototype can be looked up in teamwork:ClonePlugins. To enable the new plugin for a particular
project type, it must be added as a value of teamwork:clonePlugin to the teamwork:ProjectType instance.

Adding Event-Condition-Actions Rules

TopBraid EVN includes a simple Event-Condition-Action (ECA) rule engine that can be used to trigger rules whenever a change was performed
on an EVN project. Example use cases of this feature include anything that needs to happen as a side effect of edit operations:

updating an external index (such as Solr)
creating automatically generated triples

http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx
http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx

aligning inverse properties
sending automated notifications to co-workers
...

The following screenshot defines a rule that inserts an whenever a new has been created by rdfs:comment owl:DatatypeProperty
someone.

As shown above, these ECA rules are essentially SWP elements that define their behavior in their . To create your own rule, ui:prototype
simply create a globally registered file that imports the teamworkrules system ontology, and then create a subclass of .ui.* teamwork:

. The rule engine of EVN will execute the of any globally registered edit rule after each edit. During the execution of EditRules ui:prototype
those prototypes, there are two dedicated named graphs with a special meaning: The graph will contain the newly added ui:addedGraph
triples, and will contain those triples that have just been deleted. For example, if someone has pressed Save Changes on an ui:deletedGraph
EVN form, replacing one with another, then the will contain the new value, and will skos:altLabel ui:addedGraph ui:deletedGraph
contain the old value. You can use SPARQL to query those change triples and perform side effects with or SPARQLMotion modules.ui:update

Note that the default graph of the WHERE clause is the active EVN graph but its imports. To operate on the imports closure, use a without
WHERE clause such as:

WHERE {
{
BIND (ui:graphWithImports(ui:currentQueryGraph()) AS ?graph) .
}
GRAPH ?graph {
...
}
}

1.
2.

1.
2.
3.

3.
1.
2.
3.
4.
5.
6.

4.
5.

EVNuses this rule engine out of the box to update a Solr index after each edit (if Solr has been activated for the current project). For more
information and examples, see the that introduced the feature.Blog entry

Status change rules

It is possible to define SWP-based rules that are triggered whenever the status of a working copy changes, e.g. from Uncommitted to Frozen. The
 file contains an example of such a rule, which will send an email to all editors or managers of a given working copy evn-plugins.ui.ttlx

whenever its status changes. Take a look at . In a nutshell, the rule's prototype will be evn-plugins:SendEmailsOnTagStatusChangeRule
executed and side effects can be performed there. The prototype of the rule can find out what has changed via the special named graphs ui:

 and . Most SPARQLMotion modules such as can be used within SWP.addedGraph ui:deletedGraph sml:SendEMails

Customizing the Governance Roles

To customize the list of governance roles:

In TBCME, create a new .ttl file, open it, and import edg.topbraidlive.org/1.0/schema/SCHEMA_EDG-governance-core-v1.0.ttl
To disable existing governance roles:

Navigate to the class edg:Stewardship
Navigate to the property constraint for the role to be disabled, e.g., edg:Stewardship-applicationSteward
Set sh:deactivated to true

To add a new governance role:
Navigate to edg:WorkflowParticipantProperty
Create a new instance of this class
Choose its URI, rdfs:label, and rdfs:comment to represent the new governance role
Navigate to the class edg:Stewardship
On this class, create a new property constraint with the new property as predicate
Optionally, navigate to the new constraint and set its sh:order to adjust the order in which the governance roles will appear in the
EDG/EVN user interface

In EDG, navigate to the Import/Export tab of the Governance Model
Import RDF File, select the created file, check “Record each new triple in change history”

To undo the customization at a later stage, go to the Change History of the Governance Model, find the Change corresponding to the import, and
revert it.

Adding Custom Workflow Templates

The stages that a workflow goes through are defined by in a workflow template. The Workflow Templates page allows users to view and, if
permitted, modify the workflow templates. The workflow templates are defined in RDF in a dedicated graph, accessible via the function teamwork

. Users with a Teamwork Administrator Role in the EVN Configuration Parameters page are permitted in SPARQL queries:workflowsGraph()
to edit workflow template definitions.

Editing workflow templates is a low-level operation that should be handled with care. It is technically possible to modify workflow templates that
are already in use and, as a result of this, an existing working copy may be in a state that gets disconnected from the other states in the template,
or its whole workflow template may get deleted. We therefore strongly recommend that the development and editing of workflow templates is
performed by expert users only, and tested in a sandbox environment (such as a TBC-ME instance) before deployment to a production server.
Alternatively, consider asking TopQuadrant support staff for help.

http://www.topquadrant.com/2013/07/08/performing-side-effects-after-each-edit-in-topbraid-evn/
http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx
http://wiki.topquadrant.com/lib/5.1.0/evn-plugins.ui.ttlx
http://edg.topbraidlive.org/1.0/schema/SCHEMA_EDG-governance-core-v1.0.ttl

1.
2.
3.

4.
5.

6.
7.

The editing of workflow templates is currently performed via TBC or source code editing. For Teamwork Administrators, the basic mechanism is:

Go to Workflow Templates on the production server
Click to a local fileDownload as Turtle File
Edit this file using TobBraid Composer (or a text editor of your choice). Note that also attached to this page (see below), is an example
template file, which has workflow diagram layouts, with positioning, widths, and heights.
In a test environment, use to replace the current definitionsUpload Turtle File
If any errors are detected, the Upload feature present a report of all the errors found in the file. These errors must be addressed in order
for the file to be successfully uploaded.
Carefully test the workflows in your test environment
When satisfied, use to replace the definitions on the production serverUpload Turtle File

Defining workflow template status

Each workflow template defines a start status (e.g. Uncommitted) and a set of transitions that specify which steps are possible and by whom, until
the workflow is ended (e.g. by committing). The following list enumerates frequently used properties at workflow templates:

rdf:type: workflow templates must have rdf:type (for general asset workflows), teamwork:TagWorkflowTemplate teamwork:
 (for workflows that are specific to an existing asset), or ExistingResourceTagWorkflowTemplate teamwork:

 (for workflows that create a new asset).NewResourceTagWorkflowTemplate
rdfs:label: a human-readable label that is used to name the workflow template in the user interface
teamwork:defaultTagWorkflowTemplateForProjectType: enumerates the asset collection types for which the workflow template is the
default. Asset collection types that don't have any default workflow template fall back to the system-wide default workflow template. For
example, use as a value to make the workflow template the default for EDG Glossaries.edg:GlossaryProjectType
teamwork:suitableWorkflowForProjectType: enumerates the asset collection types for which the workflow template is suitable for use.
If left empty, it applies to all types. For example, use as the value to make the workflow template only edg:GlossaryProjectType
applicable to EDG Glossaries.
teamwork:suitableWorkflowForSubjectArea: the subject areas that asset collection must have so that the workflow template is
suitable for them. If left empty, then it applies to all subject areas. Details about defining subject areas can be found at EVN Governance

.Model
teamwork:editorWorkflowParticipantProperty: lists the workflow participant properties (e.g.) whose users are edg:responsible
automatically granted editing permission. By default, workflow participants only get viewer permission.
teamwork:managerWorkflowParticipantProperty: lists the workflow participant properties (e.g.) whose users are edg:responsible
automatically granted manager permission. By default, workflow participants only get viewer permission.
teamwork:initialStatus: specifies the initial status of a Workflow. Example values include or .teamwork:Uncommitted teamwork:New
teamwork:tagShape: (advanced feature) SHACL shapes that the working copy needs to conform to before it can be committed. These
are validated using the union of the working copy and the TCH graph as data graph, and the workflows definitions graph as shapes
graph. The focus node is the instance. There is an example below.teamwork:Tag

An additional property for templates that have the type :teamwork:ExistingResourceTagWorkflowTemplate

teamwork:editedResourceShape: the shape that edited resources need to have. Used to filter applicable workflows for a given
resource. If multiple values are present then they are interpreted as a union, i.e. a candidate resource must conform to any one of them.
An example of this is to limit a workflow for instances of teamwork:editedResourceShape [sh:class ex:Person] ex:

.Person

Defining workflow template transitions

A workflow is started in the status specified by in the template. From there, the possible transitions are defined by teamwork:initialStatus
the values of . These values must be URI or blank nodes of type , and can have the teamwork:transition teamwork:TagStatusTransition
following properties:

teamwork:fromStatus: the status that the workflow (working copy) must be in for the transition to be applied.
teamwork:toStatus: the status that the workflow (working copy) will be in after the transition is applied.

http://wiki.topquadrant.com/display/TBS55/EDG+Governance+Model
http://wiki.topquadrant.com/display/TBS55/EDG+Governance+Model

teamwork:transitionLabel: the display label of the transition, e.g. "Accept changes to production".
sh:order: an optional number that is used to order the transitions in the Workflow tab. Transitions with smaller numbers show up higher,
with 0 being the default.
teamwork:requiredGovernanceRole: the minimum governance role (e.g. informed) that a user must have on an asset collection to
perform the transition. For example, the required governance role can be an instance of , which means that any user who edg:JobRole
has is allowed to execute the transition. The user will in this case see a corresponding button edg:assignedJobRole edg:JobRole
in the UI, and under My Workflows.
teamwork:requiredProjectPermissionRole: the minimum permission role (e.g. editor) that a user must have on an asset collection
(master graph) to perform the transition. These are the roles defined on the User Roles tab of an asset collection.
teamwork:requiredTagPermissionRole: the minimum permission role (e.g. editor) that a user must have on a working copy to perform
the transition. These are the roles defined on the User Roles tab of a working copy/workflow.
teamwork:minVoteCount: the minimum number of votes required before the transition can be performed.
teamwork:voteAutoTransitions: if true then the transition will be performed automatically, as soon as sufficient votes have been
registered. This property can only be used if is present.teamwork:minVoteCount
teamwork:autoTransitionHours: the number of hours after which a working copy will automatically transition to another state. For
example this can be used to give users a chance to comment without explicitly waiting on such feedback.

Example workflow-template file with diagram layouts

This example workflow template file () shows diagram layout specifications with (x,y) positioning, widths, and create-dataset-schema.ttl

heights:

Example of teamwork:tagShape

 This example illustrates the use of to specify that a working copy can only be committed if it contains exactly one new teamwork:tagShape
instance of and no other subject. If statements are present for a workflow template, then the edg:GlossaryTerm teamwork:tagShape
Commit button will force the user to first go through a dedicated page that checks whether the working copy conforms to the specified shapes. If
violations are detected, the user may still proceed, yet he or she has been warned about the consequences.

 edg:SimpleGlossaryTermWorkflowTemplate
 rdf:type teamwork:NewResourceTagWorkflowTemplate ;
 teamwork:initialStatus teamwork:Uncommitted ;
 teamwork:tagShape glossary-term-workflow:TagHasExactlyOneGlossaryTermShape ;
 ...

glossary-term-workflow:TagHasExactlyOneGlossaryTermShape
 rdf:type sh:NodeShape ;
 sh:sparql [
 sh:message "Working copy contains changes about {?other} while it should only be about {?newTerm}"
;
 sh:prefixes <http://edg.topbraidlive.org/1.0/samples/workflows/glossary-term-workflow> ;
 sh:select """
 SELECT DISTINCT $this ?other ?newTerm
 WHERE {
 ?change teamwork:tag $this .
 ?change a teamwork:Change .
 ?change teamwork:added ?added .
 ?added teamwork:subject ?newTerm .
 ?added teamwork:predicate rdf:type .
 ?added teamwork:object edg:GlossaryTerm .
 ?otherChange teamwork:tag $this .
 ?otherChange a teamwork:Change .
 ?otherChange teamwork:added|teamwork:deleted ?aod .
 ?aod teamwork:subject ?other .
 FILTER (?other != ?newTerm) .
 }""" ;
] ;
 sh:sparql [
 sh:message "Working copy does not create a new instance of edg:GlossaryTerm." ;
 sh:prefixes <http://edg.topbraidlive.org/1.0/samples/workflows/glossary-term-workflow> ;
 sh:select """
 SELECT $this
 WHERE {
 FILTER NOT EXISTS {
 ?change teamwork:tag $this .
 ?change a teamwork:Change .
 ?change teamwork:added ?added .
 ?added teamwork:subject ?gt .
 ?added teamwork:predicate rdf:type .
 ?added teamwork:object edg:GlossaryTerm .
 }

 }""" ;
] .

Getting Started with Custom Data Quality Rules in EVN
Constraint Templates in EVN define parameterized business rules for valid data values. The business rule created from the reusable template
will in turn be executed when data is created or modified. EVN will alert the user if the rule fails as a result of a data value violation. New business
rules may be introduced at any time and any collection's report will uncover any old data that violates Reports > Programs and Suggestions
the newly added, or modified, rule. For more information please see .Using SHACL Data Constraints In The TopBraid Web Products guide

The TopBraid Teamwork Framework

Getting Started with TTF

This section provides a basic overview of the TopBraid Teamwork Framework (TTF) and its motivation. See also the dynamically generated list of
Teamwork SPARQL functions, accessible from TopBraid Composer's Help Menu.

You will need to understand TTF if you want to:

Programmatically access change history or working copies
Create new vocabulary types for $ProductFullName
Make certain modifications to options available for pre-built vocabulary types

Why TTF?

TTF is a development and runtime framework for web-based multi-user read-write applications for different types of data assets or vocabularies.

For example, an application to work with SKOS-based Taxonomies consists of pages to create a new taxonomy, to manage user permissions, to
track and review changes, to edit the taxonomy itself, to produce various reports and to run data exports and imports. Many of these capabilities
are also applicable to other kinds of vocabularies, not just SKOS taxonomies. The role of TTF is to generalize those capabilities so that it
becomes more efficient to develop similar applications in a componentized way.

Overview of TTF

TTF consist of two workspace files that connect to a database for data storage. The first database contains the actual data of the projects
"master" graph. The second database, ending with ".tch" contains metadata that is used to keep track of changes, permissions and other
vocabulary specific settings. Details of these files and their content are provided by .Graphs, Permissions and Change Tracking

TTF (sometimes called "project types") are the kinds of models that are available to the end user.vocabulary and asset types

Each vocabulary type is defined as a plugin to the teamwork framework. In a nutshell, each vocabulary type is backed by an instance of the class
 which is stored in an SWP file and points to the specific editors, plugins and other features that distinguish this teamwork:ProjectType

vocabulary type from others. If you are interested in adding your own vocabulary types, see section: . You Vocabulary/Asset (Project) Types can
also modify features available for the pre-defined vocabulary types.

EVN home pages list all installed vocabulary/asset types. When a user clicks on the available type, they see a list of all vocabularies/assets of
that type. From there, they have access to the available features.

Graphs, Permissions and Change Tracking

A combination of two related graphs, one containing the data and another one containing the change history of the data plus other information, is
called a Teamwork project. This should not to be confused with the term Eclipse project. When using EVN, every vocabulary/asset is a
Teamwork project. For the purposes of this discussion, Vocabulary/Asset is synonymous with Teamwork project.

This section introduces the two kinds of RDF graphs involved in a Teamwork project.

Anatomy of a Teamwork project

Each Teamwork project consists of two graphs that have corresponding connection files in the TopBraid workspace. You can explore those .sdb
files by opening the files created via EVN within TBC-ME. (When doing this, note that you should not close either of the two .sdb files because
this may invalidate the connection with the localhost server).

http://www.topquadrant.com/2017/04/17/shacl-topbraid-web-products-evn-edg/
http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-Graphs,PermissionsandChangeTracking
http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-Vocabulary/Asset(Project)Types

The (e.g.) contains the actual data such as the edited SKOS concepts, also known as a "production copy".master graph XY.sdb
The (e.g.) contains metadata about the project, including the change history, available working TCH (or team) graph XY.tch.sdb
copies, user permissions and comments.

TopBraid identifies Teamwork projects by their graph URIs: is the master graph for the vocabulary with the short id urn:x-evn-master:XY
"XY". Its metadata would be stored in . The teamwork namespace contains SPARQL functions that can be used to urn:x-evn-master:XY.tch
derive those URNs from ids and to extract ids from a given URN. These functions are the preferred way of working with those graphs. You can
find a complete list of those functions in .Appendix: Teamwork SPARQL Functions Reference

The (sometimes called) is the short name of the vocabulary, usually consisting of letters only.project id graph id

Permissions

All users with access to the surrounding TopBraid Live server can log into the Teamwork pages. However, who is allowed to do what can be
controlled by the system administrator as well as the corresponding vocabulary managers.

Teamwork supports the following three roles per vocabulary:

viewer: can only view a vocabulary or working copy, and make comments.
editor: same as viewer but also has editing rights to make changes to a vocabulary or working copy. See for a Working Copies (Tags)
definition and description of working copies.
manager: same as editor but also has administrative control over a vocabulary or working copy, including the permission to grant or
deny permissions to other users.

Any user can create a new vocabulary, and will become the initial manager of this project. At any given time, there must be at least one manager
per vocabulary. The vocabulary home page can then be used to grant additional permissions to other known users. All of those permissions are
stored in the TCH graph. For example if Administrator is the manager of the Teamworks project with the id XY, then the TCH graph will contain
the following triple:

<urn:x-evn-master:XY.tch> teamwork:manager <urn:x-tb-users:Administrator>

As shown above, the URIs of the users are always following the same pattern. Use the SPARQL function to access smf:currentUserName()
the currently logged in user, and to construct the user URIs as above.smf:userWithName(?userName)

In addition to assigning permission roles to individual users, it is also possible to assign roles to security roles from LDAP or tomcat. The UI
provides simple drop down boxes for this. In terms of the internal RDF representation in the TCH graph, an LDAP role is represented with a URI
such as .urn:x-tb-role:ROLE

You can get the union of all master graphs that the given user (in the example, : Administrator) has at least read access to by using special
named graphs of the pattern . For example, . This can be convenient for urn:x-evn-union<:user> urn:x-evn-union:Administrator
global search across multiple graphs. Note that such graphs are strictly read-only.

Change tracking

A change is an atomic unit of modifications to a given graph. They are usually created by the user through buttons and menu items such as the
Create Concept buttons in EVN or the Save Changes button of the SWA edit forms. Whenever the user sends such a request to the server,
master or working copy graph will be updated and the TCH graph will be updated with a new instance of . An example teamwork:Change
Change object is shown below (in Turtle):

<urn:x-change:2013-04-03T00-32-05.915ZAdministrator>
 a teamwork:Change ;
 rdfs:comment "Create Class with URI http://example.org/vocabulary1/ExampleClass"^^xsd:string ;
 dct:created "2013-04-03T00:32:05.915Z"^^xsd:dateTime ;
 sioc:has_creator <urn:x-tb-users:Administrator> ;
 teamwork:added
 [teamwork:object owl:Class ;
 teamwork:predicate rdf:type ;
 teamwork:subject <http://example.org/vocabulary1/ExampleClass>
] ;
 teamwork:added
 [teamwork:object "Sub3"^^xsd:string ;
 teamwork:predicate rdfs:label ;
 teamwork:subject <http://example.org/vocabulary1/ExampleClass>
] ;
 teamwork:added
 [teamwork:object owl:Thing ;
 teamwork:predicate rdfs:subClassOf ;
 teamwork:subject <http://example.org/vocabulary1/ExampleClass>
] ;
 teamwork:status teamwork:Committed .

This is a set of changes indicating that the user:

http://localhost:8083/tbl/swp?_viewClass=teamworkdoc:Index#teamworkdoc_SPARQLFunctions
http://wiki.topquadrant.com/display/TBS55/EVN+Developer+Guide#EVNDeveloperGuide-WorkingCopies(Tags)

Created a new class with the id http://example.org/vocabulary1/ExampleClass
Set the label of the new class to "Sub3"
Made the class a subclass of owl:Thing

A change may also point to a working copy via if it has been made while the user was editing a working copy. Each added or teamwork:tag
deleted triple is stored in reified form via , and as shown above. This makes it teamwork:subject teamwork:predicate teamwork:object
possible to find all changes for a given resource via a SPARQL query over the TCH graph. Note that is used to point at teamwork:deleted
triples that were deleted.

The triple of a change indicates whether the change has been committed to the master copy or whether it only exists in a teamwork:status
working copy - in which case the value would be .teamwork:Uncommitted

Working copies (tags)

A (internally often called) is a specific collection of changes that have been made to the master graph, but have not been working copy tag
saved in the master graph. Since all these changes are stored only in the TCH graphs, the working copy is a virtual construct that is computed on
demand only. TopBraid has a mechanism that can temporarily apply a set of changes to an RDF graph (without modifying the underlying graph).
All changes that are part of a working copy are associated with the working copy via the property .teamwork:tag

In order to access a specific working copy for a given graph (with id "XY"), and tag "myTag") use a graph URI such as urn:x-evn-tag:XY:
. In general, although it is possible to create such URIs "manually", the preferred mechanism is through the SPIN myTag:Administrator

function as in the following example: teamwork:queryGraph

SELECT ?concept
WHERE {
 BIND (teamwork:queryGraph(true, "XY", "myTag", "Administrator") AS ?graph) .
 GRAPH ?graph {
 ?concept a skos:Concept .
 }
}

Comments and Tasks

EVN forms have a button to add a comment and/or task to the currently selected resource. These items are stored in the TCH graph, as
instances of where the property points at the resource. You can explore details by looking at the TCH graph.sioc:Post sioc:about

Vocabulary/Asset Collection (Project) Types

This section explains how developers can add their own types of collections as alternatives to the pre-existing collection types defined for
TopBraid EVN, such as SKOS or . All collections of the same type share the same edit application and the same Taxonomies, Content Tag Sets
plugins. Note that defining custom collection types is a licensed feature of EVN. To upgrade a license file, please contact TopQuadrant.

Creating a new vocabulary/asset collection (project) type

Each of the default collection types that come with TopBraid EVN are plug-in modules within the more general Teamwork Framework. It is
possible to add new modules by creating an instance of the class in a globally registered SWP file (ending with teamwork:ProjectType .ui.

 This file should import the file . The best practice is to create a new Eclipse workspace project and place your file within *). teamwork.ui.ttlx
it.

Note that while you will be able to develop and test new project types in TopBraid Composer, once you deploy your code to the EVN server, new
types of collections will only be available if your solution is licensed for creation of new asset collection types.

Simply create an instance of and fill in the properties similar to how it's done in the default Ontology application (from teamwork:ProjectType
. You need to enter values for and . You also need to ontologyprojects.ui.ttlx) teamwork:singularLabel teamwork:pluralLabel

enter value for the . These values must be subclasses of the class. For the ontology teamwork:vocabularyType teamwork:Vocabulary

projects this value is ontologyprojects:Ontology. Under teamwork:Product select the one instance for EVN and add the "yourprojectype":
ProjectType to the defaultProjectType property

Once you have filled in the minimum properties for your new ProjectType, make sure that the framework "knows" about your new file by selecting
. Then you should already see a new tab for your vocabulary type on theEVNhomepage, on the same Model > Refresh global SWP graphs...

level as any other pre-existing vocabulary types such as Ontologies.

Create-new pages

http://localhost:8083/tbl/swp?_viewClass=teamworkdoc:SPARQLFunctions

The section for your new vocabulary/asset collection types on the home page will have a link to create a new vocabulary/asset collection of your
type. The framework will use the singular or plural labels that you have specified wherever possible, so the link may be "Create New My Custom
Collection" if that's how you have called it. The link will by default go to a default create page where the user can enter label, default namespace
and a description of the new asset collection.

If you need additional parameters at creation time, take a look at how this is done in the case of Crosswalks, in crosswalkprojects:
.CreateProjectPage

Project plug-ins

As you might know, the main page of any collection's production or working copy contains links to various "utilities" features such as Import
/Export, Report, etc. These come from plug-ins. You may want to explore the standard plug-ins shipped as part of the Teamwork Framework, e.g.

.teamwork:TurtleFileExportPlugin

In a freshly created , no plug-in would show up. You need to select those plug-in that you want to expose via the teamwork:ProjectType team
 property.work:projectPlugin

There is also a generic SPARQLMotion-based importer mechanism that applies to all vocabulary types. Such importers receive an uploaded file
as input and produce triples that shall be added to the current vocabulary or working copy. In order to create such importers, store them in a file
ending with . Import the file and use the properties defined therein to link your either with a .sms.* teamworkscripts.ttl sm:Function
vocabulary type or specific vocabularies for which the function shall show up. The script needs to end with and take exactly sml:ReturnRDF
one string argument - the body of the uploaded file.

Custom icon for project type

To add a custom icon to the project type:

Search the properties pane for edg.v:icon and drag this property onto your new project type resource form, give it a value.

1.
2.

The value for custom icons must start with the string "custom-" or they will be ignored and the default icon (a circle) will be used. Add a style
block which defines your custom icon style like seen below. This can live in any external stylesheet. We suggest you create your own "*.www"
directory to hold these types of customizations.

#primaryNav .custom-menu-icon {
 background-image: url(" ");https://maxcdn.icons8.com/Share/icon/Messaging//online1600.png

}

(Ensure that the sytlesheet is loaded in the application pages.)

Extending the ReportsProblems and Suggestions

The report feature implements data quality rules for collections (see a collection type's User Guide Problems and Suggestions ...Utilities >
 for documentation). This feature includes an extension point allowing developers to plug in their Reports > Problems and Suggestions Report

own algorithms written in Java or SWP. For an example of SWP-based suggestion generators, in TBC open , select tosh.ui.ttlx tosh:
 and go to . Use a copy of the example(s) as a starting point.ReportsGenerator Resource > Find usages in workspace

Notifications

The Teamwork Framework includes a notifications mechanism that can be configured to send notification emails (and other notification) to
subscribers. The process to set this up consists of two steps:

Assign organizations, persons, users or user groups to RACI roles using the Metadata tab
Select which notification events shall be triggered for which RACI role

New notification types can be added by creating subclasses of in a file. There are two ways of triggering teamwork:Notifications .ui.
notifications:

Manually, by calling the SWP element teamwork:sendNotifications
By hooking into direct changes against the master graph (subclassing) or the TCH graph teamwork:MasterEditNotifications
(subclassing). In those cases, an needs to be specified to determine teamwork:TCHEditNotifications arg:expression
whether the notification must be sent for the given set of changes.

The file contains plenty of examples.teamworknotifications.ui.ttlx

In order to have notifications sent to other channels than emails, you need to create a new SWP file with ending, and define a .ui.ttlx
subclass of that points at via . In the of teamwork:sendNotifications teamwork:sendNotifications ui:overrides ui:prototype
that subclass, you may repurpose the incoming arguments such as , for example, to call for output into a JMS bus.?text sml:ExportToJMS

Editors

Editors are the SWP applications that are loaded when the user clicks on or . While these editors can in Edit Production XY Edit Working Copy
principle be any type of web interface, it is often the easiest to start with the procedure below.

https://maxcdn.icons8.com/Share/icon/Messaging//online1600.png

Creating an Editor

The easiest way or creating a new editor is to take an existing editor as a starting point. Use and File > New > SWP Application from Template
select from one of the available options. For example, if you want to base your new editor on the ontology editor, select . Then link ontologyapp
your with that editor via the property. A side effect of this procedure is that you teamwork:ProjectType teamwork:projectEditorClass
can in principle reuse the same editor class for different vocabulary types.

From there on, your copy of the Ontology editor application can be modified by adding, changing or removing gadgets and their surrounding
windows. The SWA user guide should provide you enough information to get started with that.

	EVN Developer Guide

